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Preface

What to Expect

Key Terms
Data science is a fusion of multiple disciplines, including statistics, computer science,
information technology and domain specific fields. As a result, a several different
terms could be used to reference a given concept. Key terms and their synonyms will
be highlighted throughout the book in a sidebar such as this.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/title_title.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Book Title by Some Author
(O’Reilly). Copyright 2012 Some Copyright Holder, 978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.
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Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/<catalog
page>.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Exploratory Data Analysis

As a discipline, statistics has mostly developed in the past century. Probability theory
— the mathematical foundation for statistics — was developed in the 17th to 19th
centuries based on work by Thomas Bayes, Pierre-Simon Laplace and Carl Gauss. In
contrast to the purely theoretical nature of probability, statistics is an applied science
concerned with analysis and modeling of data. Modern statistics as a rigorous scien‐
tific discipline traces its roots back to the late 1800’s and Francis Galton and Karl
Pearson. R. A. Fischer, in the early 20th century, was a leading pioneer of modern sta‐
tistics, introducing key ideas of experimental design and maximum likelihood estima‐
tion. These and many other statistical concepts live largely in the recesses of data
science. The main goal of this book is to help illuminate these concepts and clarify
their importance — or lack thereof — in the context of data science and big data.
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Figure 1-1. John Tukey, a preeminent statistician, whose ideas developed over fifty years
ago form the foundation of data science.

This chapter focuses on the first step in any data science project: exploring the data.
Exploratory data analysis, or EDA, is a comparatively new area of statistics. Classical
statistics focused almost exclusively on inference, a sometimes complex set of proce‐
dures for drawing conclusons about large populations based on small samples. In
1962, John W. Tukey called for a reformation of statistics in his seminal paper “The
Future of Data Analysis” ???. He proposed a new scientific discipline called “Data
Analysis” that included statistical inference as just one component. Tukey forged links
to the engineering and computer science communities (he coined the terms “bit,”
short for binary digit, and “software”), and his original tenets are suprisingly durable
and form part of the foundation for data science. The field of exploratory data analy‐
sis was established with Tukey’s 1977 now classic book “Exploratory Data Analy‐
sis” ???.

With the ready availablility of computing power and expressive data analysis soft‐
ware, exploratory data analysis has evolved well beyond its original scope. Key drivers
of this discipline have been the rapid development of new technology, access to more
and bigger data, and the greater use of quantitative analysis in a variety of disciplines.

12 | Chapter 1: Exploratory Data Analysis
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David Donoho, professor of Statistics at Stanford University and undergraduate stu‐
dent of Tukey, authored an excellent article based on his presentation at the Tukey
Centennial workshop in Princeton, NJ ???. Donoho traces the genesis of data science
back to the Tukey’s pioneering work in data analysis.

Elements of Structured Data
Data comes from many sources: sensor measurements, events, text, images, and vid‐
eos. The Internet of Things is spewing out streams of information. Much of this data is
unstructured: images are a collection of pixels with each pixel containing RGB color
information. Texts are sequences of words and non-word characters, often organized
by sections, sub-sections, etc.. Click streams are sequences of actions by a user inter‐
acting with an app or web page. In fact, a major challenge of data science is to harness
this torrent of raw data into actionable information. To apply the statistical concepts
covered in this book, unstructured raw data must be processed and manipulated into
a structured form, as it might emerge from a relational database, or be collected for a
study.

Key Terms for Data Types
Continuous

Data that can take on any value in an interval.

Synonyms
interval, float, numeric

Discrete
Data that can only take on integer values, such as counts.

Synonyms
integer, count

Categorical
Data that can only take on a specific set of values.

Synonyms
enums, enumerated, factors, nominal, polychotomous

Binary
A special case of categorical with just two categories (0/1, True, False).

Synonyms
dichotomous, logical, indicator

Ordinal
Categorical data that has an explicit ordering.

Elements of Structured Data | 13



Synonyms
ordered factor

There are two basic types of structured data: numeric and categorical. Numeric data
comes in two forms: continuous, such as wind speed or time duration, and discrete,
such as the count of the occurence of an event. Categorical data takes only a fixed set
of values, such as a type of TV screen (plasma, LCD, LED, …) or a state name (Ala‐
bama, Alaska, …). Binary data is an important special case of categorical data that
takes on only one of two values, such as 0/1, yes/no or true/false. Another useful type
of categorical data is ordinal data in which the categories are ordered; an example of
this is a numerical rating (1, 2, 3, 4, or 5).

Why do we bother with a taxonomy of data types? It turns out that for the purposes
of data analysis and predictive modeling, the data type is important to help determine
the type of visual display, data analysis or statistical model. In fact, data science soft‐
ware, such as R and Python, use these data types to improve computational perfor‐
mance. More important, the data type for a variable determines how software will
handle computations for that variable.

Software engineers and database programmers may puzzle why we even need the
notion of categorical and ordinal data for analytics. After all, categories are merely a
collection of text (or numeric) values, and the underlying database automatically han‐
dles the internal representation. However, explicit identification of data as categorical,
as distinct from text, does offer some advantages.

1. Knowing that data is categorical can act as a signal to tell software how statistical
procedures, such as producing a chart or fitting a model, should behave. In par‐
ticular, ordinal data can be represented as an ordered.factor in R and python,
preserving a user-specified ordering in charts, tables and models.

2. Storage and indexing can be optimized (as in relational database).
3. The possible values a given categorical variable can take are enforced in the soft‐

ware (like an enum).

The third “benefit” can lead to unintended or unexpected behavior: the default
behavior of data import functions in R (e.g., read.csv) is to automatically convert a
text column into a factor. Subsequent operations on that column will assume that
only the allowable values for that column are the ones originally imported, and
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assigning a new text value will introduce a warning and produce an NA (missing
value).

Key Ideas
1. Data are typically classified in software by their type
2. Data types include continuous, discrete, categorical (which includes binary), and

ordinal
3. Data-typing in software acts as a signal to the software on how to process the

data

Further Reading
1. Data types can be confusing, since types may overlap, and the taxonomy in one

software may differ from that in another. Here is a tutorial for the taxonomy for
R: http://www.r-tutor.com/r-introduction/basic-data-types

2. Databases are more detailed in their classification of data types, incorporating
considerations of precision levels, fixed or variable length fields, etc.; see this
guide for SQL: http://www.w3schools.com/sql/sql_datatypes_general.asp

Rectangular Data
The typical frame of reference for an analysis in data science is a rectangular data
object, like a spreadsheet or database table.

Key Terms for Rectangular Data
Data frame

Rectangular data (like a spreadsheet) is the basic data structure for statistical and
machine learning models

Feature
A column in the table is commonly refered to as a feature.

Synonyms
attribute, input, predictor, variable

Outcome
Many data science projects involve predicting an outcome - often a yes/no out‐
come (in Table 1-1, it is “auction was competitive or not”). The features are some‐
times used to predict the outcome in an experiment or study.
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Synonyms
dependent variable, response, target, output

Records
A row in the table is commonly referred to as a record.

Synonyms
case, example, instance, observation, pattern, sample

Retangular data is essentially a 2-dimensional matrix with rows indicating records
(cases) and columns indicating features (variables). The data don’t always start in this
form: unstructured data (e.g. text) must be processed and manipulated so that it can
be represented as a set of features in the rectangular data (see “Elements of Structured
Data” on page 13). Data that are in relational databases must be extracted and put
into a single table for most data analysis and modeling tasks.

In Table 1-1 there is a mix of measured or counted data (e.g. duration and price), and
categorical data (e.g. category and currency). A special form of categorical variable is
a binary (yes/no or 0/1) variable, seen in the right-most column in Table 1-1 — an
indicator variable showing whether an auction was competitive or not.

Table 1-1. A Typical Data Format

Category currency sellerRating Duration endDay ClosePrice OpenPrice Competitive?

Music/Movie/Game US 3249 5 Mon 0.01 0.01 0

Music/Movie/Game US 3249 5 Mon 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 1

Automotive US 3115 7 Tue 0.01 0.01 1

Data Frames and Indexes
Traditional database tables will have one or more columns designated as an index.
This can vastly improve the efficiency of certain SQL queries. In Python, with the
pandas library, the basic rectangular data structure is a DataFrame object. By default,
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an automatic integer index is created for a DataFrame based on the order of the rows.
In pandas, it is also possible to set multi-level/hierarchical indexes to improve the
efficiency of certain operations.

In R, the basic rectangular data structure is a data.frame object. A data.frame also
has an implicit integer index based on the row order. While a custom key can be cre‐
ated through the row.names attribute, the native R data.frame does not support user-
specified or multi-level indexes. To overcome this deficiency, two new packages are
gaining widespread use: data.table and dplyr. Both support multi-level indexes and
offer significant speed-ups in working with a data.frame.

Terminology Differences

Terminology for rectangular data can be confusing. Statisticians
and data scientists use different terms for the same thing. For a sta‐
tistician, predictor variables are used in a model to predict a
response or dependent variable. For a data scientist, features are used
to predict a target. One synonym is particularly confusing: com‐
puter scientists will use the term sample for a single row; a sample
to a statistian means a collection of rows

Graph Data
In additional to rectangular data, another important data structure is graph or net‐
work. These are used to represent physical, social and abstract relationships. For
example, a graph of a social network, such as Facebook or LinkedIn, may represent
connections between people on the network. Distribution hubs connected by roads
are an example of a physical network. Graph structures are useful for certain types of
problems, such network optimization and recommender systems (see ???). Nonethe‐
less, the vast majority of applications in data science are based on the rectangular data
structure.
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Graphs in Statistics

In computer science and information technology, the term graph
typically refers to a depiction of the connections among entities,
and to the underlying data structure. In statistics, graph is used to
refer to a variety of plots and visualizations, not just of connections
among entities, and the term applies just to the visualization, not to
the data structure.

Key Ideas
1. The basic data structure in data science is a rectangular matrix in which rows are

records and columns are variables (features).
2. Terminology can be confusing; there are a variety of synonyms arising from the

different disciplines that contribute to data science (statistics, computer science,
information technology).

Further Reading
1. Documentation on data frames in R: https://stat.ethz.ch/R-manual/R-devel/

library/base/html/data.frame.html
2. Documentation on data frames in Python: http://pandas.pydata.org/pandas-docs/

stable/dsintro.html#dataframe

Estimates of Location
Variables with measured or count data might have thousands of distinct values. A
basic step in exploring your data is getting a “typical value” for each feature (variable):
an estimate of where most of the data are located (i.e. their central tendency).

Key Terms for Estimates of Location
Mean

The sum of all values divided by the number of values.

Synonyms
average

Weighted Mean
The sum of all values times a weight divided by the sum of the weights.
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Synonyms
weighted average

Median
The value such that one-half of the data lies above and below.

Synonyms
50th percentile

Weighted Median
The value such that one-half of the sum of the weights lies above and below the
sorted data.

Trimmed Mean
The average of all values after dropping a fixed number of extreme values.

Synonyms
truncated mean

Robust
Not sensitive to extreme values.

Synonyms
resistant

Outlier
A data value that is very different from most of the data.

Synonyms
extreme value

At first glance, summarizing data might seem fairly trivial: just take the mean of the
data (see “Mean” on page 20). In fact, while the mean is easy to compute and expedi‐
ent to use, it may not always be the best measure for a central value. For this reason,
statisticians have developed and promoted several alternative estimates to the mean.

Metrics and Estimates

Statisticians often use the term estimates for values calculated from
the data at hand, to draw a distinction between what we see from
the data, and the theoretical true or exact state of affairs. Data sci‐
entists and business analysts are more likely to refer to such values
as a metric. The difference reflects the approach of statistics versus
data science: Accounting for uncertainty lies at the heart of the dis‐
cipline of statistics, whereas concrete business or organizational
objectives are the focus of data science. Hence, statisticians esti‐
mate, and data scientists measure.
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Mean
The most basic estimate of location is the mean, or average value. The mean is the
sum of all the values divided by the number of values. Consider the following set of
numbers: {3 5 1 2}. The mean is (3+5+1+2)/4= 11/4 = 2.75. You will encounter the
symbol x to represent the mean of a sample from a population (pronounced x-bar).
The formula to compute the mean for a set of N values x1, x2, ..., xN is

Mean = x =
∑i

N xi
N

A variation of the mean is a trimmed mean, calculated by dropping a fixed number of
sorted values at each end and then take an average of the remaining values. Repre‐
senting the sorted by x 1 , x 2 , ..., x N  where x 1  is the smallest value and x N , the for‐
mula to compute the trimmed mean with p smallest and largest values omitted is

Trimmed Mean = x =
∑i = p + 1

N − p x i
N − 2p

A trimmed mean eliminates the influence of extreme values. For example, scoring for
international diving is obtained dropping the top and bottom score from five judges
and taking the average of the three remaining judges ???> This makes it difficult for a
single judge to manipulate the score, perhaps to favor their country’s contestant.
Trimmed means are widely used, and in many cases, are preferable to use instead of
the ordinary mean: see “Median and Robust Estimates” on page 21 for further discus‐
sion.

Another type of mean is a weighted mean, calculated by multiplying each data value xi
by a weight wi and dividing their sum by the sum of the weights. The formula for a
weighted mean is

Weighted Mean = xw =
∑i = 1

N wixi

∑i
N wi

There are two main motivations for using a weighted mean:

1. Some values are intrinsically more variable than others, and highly variable
observations are given a lower weight. For example, if we are taking the average
from multiple sensors and one of the sensors is less accurate, then we might
downweight the data from that sensor.
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2. The data collected does not equally represent the different groups that we are
interested in measure. For example, because of the way an online experiment was
conducted, we may not have a set of data that accurately reflects all groups in the
user base. To correct that, we can give a higher weight to the values from the
groups that were underrepresented.

Median and Robust Estimates
The median is the middle number on a sorted list of the data. If there is an even num‐
ber of data values, the middle value is one that is not actually in the data set, but
rather is the average of the two values that divide the sorted data into upper and lower
halves. Compared to the mean, which uses all observations, the median only depends
on the values in the center of the sorted data. While this might seem to be a disadvan‐
tage, since the mean is much more sensitive to the data, there are many instances in
which the median is a better metric for location. Let’s say we want to look at typical
household incomes in neighborhoods around Lake Washington in Seattle. In com‐
paring the Medina neighborhood to the Windermere neighborhood, using the mean
would produce very different results because Bill Gates lives in Medina. If we use the
median, it won’t matter how rich Bill Gates is — the position of the middle observa‐
tion will remain the same.

For the same reasons that one uses a weighted mean, it is also possible to compute a
weighted median. As with the median, we first sort the data, although each data value
has an associated weight. Instead of taking the middle number, the weighted median
is the value such that sum of weights is equal for the lower and upper halves of the
sorted list. Like the median, the weighted median is robust to outliers.

Outliers
The median is referred to as a robust estimate of location since it is not influenced by
outliers (extreme cases) that could skew the results. An outlier is any value that is very
distant from the other values in a dataset. The exact definition of an outlier is some‐
what subjective, although certain conventions are used in various data summaries
and plots (see “Percentiles and Boxplots” on page 30). Being an outlier in itself does
not make a data value invalid or erroneous (as in the example above with Bill Gates).
Still, outliers are often the result of data errors such as mixing data of different units
(kilometers versus meters) or bad readings from a sensor. When outliers are the
result of bad data, the mean will result in a poor estimate of location while the
median will be still be valid. In any case, outliers should be identified and are often
worthy of further investigation.
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Anomaly Detection

In contrast to typical data analysis, where outliers are sometimes
informative and sometimes a nuisance, in anomaly detection the
points of interest are the outliers, and the greater mass of data
serves primarily to define the “normal” against which anomalies
are measured.

The median is not the only robust estimate of location. In fact, a trimmed mean is
widely used to avoid the influence of outliers. For example, trimming the bottom and
top 10% (a common choice) of the data will provide protection against outliers in all
but the smallest data sets. The trimmed mean can be thought of as a compromise
between the median and the mean: it is robust to extreme values in the data, but uses
more data to calculate the estimate for location.

Other Robust Metrics for Location

Statisticians have developed a plethora of other estimators for loca‐
tion, primarily with the goal of developing an estimator more
robust than the mean but more efficient (i.e. better able to discern
small location differences between datasets). While these methods
are potentially useful for small data sets, they are not likely to pro‐
vide added benefit for large or even moderately sized data sets.

Example: Location Estimates of Population and Murder Rates
Table 1-2 shows the first few rows in the data set containing population and murder
rates (in units of murders per 100,000 people per year) for each state. Compute the
mean, trimmed mean and median for the population using R:

> state <- read.csv(file="/Users/andrewbruce1/book/state.csv")
> mean(state[["Population"]])
[1] 6162876
> mean(state[["Population"]], trim=0.1)
[1] 4783697
> median(state[["Population"]])
[1] 4436370

Table 1-2. A few rows of the data.frame state of population and murder rate by state.

State Population Murder Rate

1 Alabama 4,779,736 5.7

2 Alaska 710,231 5.6

3 Arizona 6,392,017 4.7
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State Population Murder Rate

4 Arkansas 2,915,918 5.6

5 California 37,253,956 4.4

6 Colorado 5,029,196 2.8

7 Connecticut 3,574,097 2.4

8 Delaware 897,934 5.8

The mean is bigger than the trimmed mean which is bigger than the median. This is
because the trimmed mean excludes the largest and smallest 5 states (trim=0.1 drops
10% from each end). If we want to compute the average murder rate for the country,
we need to use a weighted mean or median to account for different populations in the
states. Since base R doesn’t have a function for weighted median, it is necessary to
install a package such as matrixStats

> weighted.mean(state[["Murder.Rate"]], w=state[["Population"]])
[1] 4.445834
> library("matrixStats")
> weightedMedian(state[["Murder.Rate"]], w=state[["Population"]])
[1] 4.4

In this case, the weighted mean and median are about the same.

Key Ideas
1. The basic metric for location is the mean, but it can be sensitive to extreme val‐

ues (outlier)
2. Other metrics (median, trimmed mean) are more robust

Further Reading
1. Michael Levine (Purdue) has posted some useful slides on basic calculations for

measures of location: http://www.stat.purdue.edu/~mlevins/STAT511_2012/
Lecture2standard.pdf

2. John Tukey’s 1977 classic Exploratory Data Analysis (Pearson) is still widely read.
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Estimates of Variability
Location is just one dimension in summarizing a feature. A second dimension, varia‐
bility, also referred to as dispersion, measures whether the data values are tightly clus‐
tered or spread out. At the heart of statistics lies variability: measuring it, reducing it,
distinguishing random from real variability, identifying the various sources of real
variability and making decisions in the presence of it.

Key Terms for Variability Metrics
Deviations

The difference between the observed values and the estimate of location.

Synonyms
errors, residuals.

Variance
The sum of squared deviations from the mean divided by N-1 where N is the
number of data values.

Synonyms
mean-squared-error.

Standard Deviation
The square root of the variance.

Synonyms
l2-norm, Euclidean norm

Mean Absolute Deviation
The mean of the absolute value of the deviations from the mean.

Synonyms
l1-norm, Manhattan norm

Median Absolute Deviation from the Median
The median of the absolute value of the deviations from the median.

Range
The difference between the largest and the smallest value in a data set.

Order Statistics
Metrics based on the data values sorted from smallest to biggest.

Synonyms
ranks
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Percentile
The value such that P percent of the values take on this value or less and (100-P)
percent take on this value or more.

Synonyms
quantile

Interquartile Range
The difference between the 75th percentile and the 25th percentile

Synonyms
IQR

Just as there are different ways to measure location (mean, median, …) there are also
different ways to measure variability.

Standard Deviation and Related Estimates
The most widely used estimates of variation are based on the the differences, or devi‐
ations, between the estimate of location and the observed data. For a set of data {1, 4,
4}, the mean is 3 and the median is 4. The deviations from the mean are the differ‐
ences: 1 - 3 = -2, 4 - 3 = 1 , 4 - 3 = 1. These deviations tell us how dispersed the data is
around the central value.

One way to measure variability is to estimate a typical value for these deviations.
Averaging the deviations themselves would not tell us much - the negative deviations
offset the positive ones. In fact, the sum of the deviations from the mean is precisely
zero. Instead, a simple approach is to take the average of the absolute values of the
deviations from the mean. In the above example, the absolute value of the deviations
is {2 1 1} and their average is (2+1+1)/3 = 1.33. This is known as the mean absolute
deviation and is computed using the formula

Mean Absolution Deviation =
∑i = 1

N xi − x
N

where x is the sample mean.

The best known estimates for variability are the variance and the standard deviation
which are based on squared deviations. The variance is an average of the squared
deviations and the standard deviation is the square root of the variance.

Variance = s2 = ∑ x − x 2

N − 1
Standard Deviation = s = Variance
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The standard deviation is much easier to interpret than the variance since it is on the
same scale as the original data. Still, with its more complicated and less intuitive for‐
mula, it might seem peculiar that the standard deviation is preferred in statistics over
the mean absolute deviation. Its owes its preeminence to statistical theory: mathemat‐
ically, it turns out that working with squared values is much more convenient than
absolute values, especially for statistical models (see ???).

Degrees of Freedom, and N or N-1?

In statistics books, there is always some discussion of why we have
N-1 in the denominator in the above formula, instead of N, leading
into the concept of degrees of freedom. This distinction is not
important since N is generally large enough so it won’t make much
difference whether you divide by N or N-1. But, in case you are
interested, here is the story.
If you use the intuitive denominator of N in the above formula, you
will underestimate the true value of the standard deviation in the
population. This is refered to as a biased estimate. However, if you
divide by N-1 instead of N, the standard deviation becomes an
unbiased estimate.
To fully explain why using N leads to a biased estimate involves the
notion of degrees of freedom, which takes into account the number
of constraints in computing an estimate. In this case, there are N-1
degrees of freedom since there is one constraint: the standard devi‐
ation depends on calculating the sample mean. For many problems,
data scientists do not need to worry about degrees of freedom, but
there are cases where the concept is important (see ???).

Neither the variance, the standard deviation nor the mean absolute deviation are
robust to outliers and extreme values (see “Median and Robust Estimates” on page 21
for a discussion of robust estimates for location). The variance and standard devia‐
tion are especially sensitive to outliers since they are based on the squared deviations.

An robust estimate of variability is the median absolute deviation from the median,
sometimes denoted by MAD:

Median Absolution Deviation = Median x1 − m , x2 − m , ..., xN − m

where m is the median. Like the median, the MAD is not influenced by extreme val‐
ues. It is also possible to compute a trimmed standard deviation analogous to the
trimmed mean (see ???).
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The variance, the standard deviation, mean absolute deviation and
median absolute deviation from the median are not equivalent esti‐
mates, even in the case where the data comes from a normal distri‐
bution. In fact, the standard deviation is always greater than the
mean absolute deviation which itself is greater than the median
absolute deviation. Sometimes, the median absolute deviation is
multiplied by a factor of 1.4826: this puts MAD on the same scale
as the standard deviation in the case of a normal distribution.

Estimates Based on Percentiles
A different approach to estimating dispersion is based on looking at the spread of the
sorted data. Statistics based on sorted (ranked) data are refered to as order statistics.
The most basic measure is the range: the difference between the largest and smallest
number. The minimum and maximum values themselves are useful to know, and
helpful in identifying outliers, but the range is extremely sensitive to outliers and not
very useful as a general measure of dispersion in the data.

To avoid the sensitivity to outliers, we can look at the range of the data after dropping
values from each end. Formally, these types of estimates are based on differences
between percentiles. In a dataset, the P-th percentile is a value such that at least P per‐
cent of the values take on this value or less and at least (100-P) percent of the values
take on this value or more. For example, to find the 80th percentile, sort the data.
Then, starting with the smallest value, proceed 80 percent of the way to the largest
value. Note that the median is the same thing as the 50th percentile. The percentile is
essentially the same as a quantile, with quantiles indexed by fractions (so the .8 quan‐
tile is the same as the 80th percentile).

A common measurement of variability is the difference between the 25th percentile
and the 75th percentile, called the interquartile range (or IQR). Here is a simple exam‐
ple: 3,1,5,3,6,7,2,9. We sort these to get 1,2,3,3,5,6,7,9. The 25th percentile is at 2.5,
and the 75th percentile is at 6.5, so the interquartile range is 6.5 - 2.5 = 4. Software
can have slightly differing approaches that yield different answers (see the note
below.) Typically these differences are smaller.

For very large datasets, calculating exact percentiles can be computationally very
expensive since it requires sorting all the data values. Machine learning and statistical
software use special algorithms, such as ??? to calculate an approximate percentile
that can be calculated very quickly and is guaranteed to have a certain accuracy.
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Percentile: Precise Definition

If we have an even number of data (N is even), then the percentile
is ambiguous under the above definition. In fact, we could take on
any value between the order statistics x j  and x j + 1  where j satis‐
fies

100 * j
N ≤ P < 100 * j + 1

N

Formally, the percentile is the weighted average

Percentile P = 1 − w x j + wx j + 1

for some weight w between 0 and 1. Statistical software has slightly
differing approaches to choose w In fact, the R function quantile
offers nine different alternatives to compute the quantile: see ??? for
a full discussion. Except for small datasets, you don’t usually need
to worry about the precise way a percentile is calculated.

Example: Variability Estimates of State Population
Table 1-2 shows the first few rows in the data set containing population and murder
rates for each state. Using R’s built-in functions for the standard deviation, interquar‐
tile range (IQR) and the median absolution deviation from the median (MAD), we
can compute estimates of variability for the state population data:

> sd(state[["Population"]])
[1] 6848235
> IQR(state[["Population"]])
[1] 4847308
> mad(state[["Population"]])
[1] 3849870

The standard deviation is almost twice as large as the MAD (in R, by default, the scale
of the MAD is adjusted to be on the same scale as the mean) This is not surprising
since the standard deviation is sensitive to outliers.

Key Ideas
1. The variance and standard deviation are the most widespread and routinely

reported statistics of variabilit
2. Both are sensitive to outliers

28 | Chapter 1: Exploratory Data Analysis

www.allitebooks.com

http://www.allitebooks.org


3. More robust metrics include mean and median absolute deviations from the
mean, and percentiles (quantiles)

Further Reading
1. David Lane’s online statistics resource has a section on percentiles here: http://

onlinestatbook.com/2/introduction/percentiles.html
2. Kevin Davenport has a useful post on deviations from the median, and their

robust properties in R-Bloggers: http://www.r-bloggers.com/absolute-deviation-
around-the-median/

Exploring the Data Distribution
Each of the estimates described above sums up the data in a single number to
describe the location or variability of the data. It is also useful to explore how the data
are distributed overall.

Key Terms for Exploring the Distribution
Boxplot

A plot introduced by Tukey as a quick way to visualize the distribution of data.

Synonyms
Box and whiskers plot

Frequency Table
A tally of the count of numeric data values that fall into a set of intervals (bins).

Histogram
A plot of the frequency table with the bins on the x-axis and the count (or pro‐
portion) on the y-axis.

Density Plot
A smoothed version of the histogram, often based on a kernal density estimate.
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Statistical Moments

In statistical theory, location and variability are referred to as the
first and second moments of a distribution. The third and fourth
moments are called skewness and kurtosis. Skewness refers to
whether the data is skewed to larger or small values and kurtosis
indicates the propensity of the data to have extreme values. Gener‐
ally, metrics are not used to measure skewness and kurtosis;
instead, these are discovered using the visual displays such as
Figure 1-2 and Figure 1-3. See ??? for formulas and more details
about skewness and kurtosis.

Percentiles and Boxplots
In “Estimates Based on Percentiles” on page 27, we explored how percentiles can be
used to measure the spread of the data. Percentiles are also valuable to summarize the
entire distribution. It is common to report the quartiles (25th, 50th and 75th percen‐
tiles) and the deciles (the 10th, 20th, …, 90th percentiles). Percentiles are especially
valuable to summarize the tails (the outer range) of the distribution. Popular culture
has coined the term one-percenters to refer to the people in the top 99th percentile of
wealth.

Table 1-3. Percentiles of murder rate by state.

5% 25% 50% 75% 95%

1.60 2.42 4.00 5.55 6.51

Table 1-3 displays some percentiles of the murder rate by state. In R, this would be
produced using the quantile function:

quantile(state[["Murder.Rate"]], p=c(.05, .25, .5, .75, .95))
   5%   25%   50%   75%   95%
1.600 2.425 4.000 5.550 6.510

The median is 4 murders per 100,000 people although there is quite a bit of variabil‐
ity: the 5th percentile is only 1.6 and the 95th percentile is 6.51
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Figure 1-2. Boxplot of State Populations

Boxplots, introduced by Tukey ???, are based on percentiles and give a quick way to
visualize the distribution of data. Figure 1-2 shows a boxplot of the population by
state produced by R:

boxplot(state[["Population"]]/1000000, ylab="Population (millions)")

The top and bottom of the box are the 75th and 25th percentiles, respectively. The
median is shown by the horizontal line in the box. The dashed lines, referred to as
whiskers, extend from the top and bottom to indicate the range for the bulk of the
data. There are many variations of a boxplot: see, for example, the documentation for
the R function boxplot ???. By default, the R function extends the whiskers to the fur‐
thest point beyond the box, except that it will not go beyond 1.5 times the IQR. Other
software may use a different rule. Any data outside of the whiskers are plotted as sin‐
gle points.

Frequency Table and Histograms
A frequency table of a variable divides up the variable range into equally spaced seg‐
ments, and tells us how many values fall in each segment. Table 1-4 shows a fre‐
quency table of the population by state computed using R:

breaks <- seq(from=min(state[["Population"]]),
                to=max(state[["Population"]]), length=11)
pop_freq <- cut(state[["Population"]], breaks=breaks,
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                right=TRUE, include.lowest = TRUE)
table(pop_freq)

Table 1-4. A frequency table of population by state.

BinNumber BinRange Count States

1 563,626-4,232,658 24 WY,VT,ND,AK,SD,DE,MT,RI,NH,ME,HI,ID,NE,WV,NM,NV,UT,KS,AR,MS,IA,CT,OK,OR

2 4,232,659-7,901,691 14 KY,LA,SC,AL,CO,MN,WI,MD,MO,TN,AZ,IN,MA,WA

3 7,901,692-11,570,724 6 VA,NJ,NC,GA,MI,OH

4 11,570,725-15,239,757 2 PA,IL

5 15,239,758-18,908,790 1 FL

6 18,908,791-22,577,823 1 NY

7 22,577,824-26,246,856 1 TX

8 26,246,857-29,915,889 0

9 29,915,890-33,584,922 0

10 33,584,923-37,253,956 1 CA

The least populous is Wyoming, with 563,626 people (2010 Census) and the most
populous is California, with 37,253,956 people. This gives us a range of 37,253,956 -
563,626 = 36,690,330 which we must divide up into equal size bins - let’s say 10 bins.
With 10 equal size bins, each bin will have a width of 3,669,033, so the first bin will
span from 563,626 to 4,232,658. By contrast, the top bin, 33,584,923 to 37,253,956,
has only one state - California. The two bins immediately below California are empty,
until we reach Texas. It is important to include the empty bins - the fact that there are
no values in those bins is useful information.

Both frequency tables and percentiles summarize the data by creat‐
ing bins. In general, quartiles and deciles will have the same count
in each bin (equal-count bins) but the bin sizes will be different.
The frequency table, by contrast, will have different counts in the
bins (equal-size bins).

A histogram is a way to visualize a frequency table, with bins on the x-axis, and data
count on the y-axis. To create a histogram corresponding to the frequency table
Table 1-4 in R, use the hist function with the breaks argument:
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hist(state[["Population"]], breaks=breaks)

The histogram is shown in Figure 1-3 In general, histograms are plotted such that -
Empty bins are included in the graph - Bins are equal width - Number of bins (or,
equivalently, bin size) is up to the user - Bars are contiguous — no empty space shows
between bars, unless there is an empty bin.

Figure 1-3. Histogram of State Populations

Density Estimates
Related to the histogram is a density plot which shows the distribution of data values
as a continuous line. It can be thought of as a smoothed histogram, although it is typi‐
cally computed directly from the data using a kernal density estimate (see ??? for a
short tutorial). Figure 1-4 displays a density estimate superposed on a histogram. In
R, a density estimate can be computed using the density function:

hist(state[["Murder.Rate"]], freq=FALSE)
lines(density(state[["Murder.Rate"]]), lwd=3, col="blue")

A key distinction from the histogram plotted in Figure 1-3 is the scale of the y-axis: a
density plot corresponds to plotting the histogram as a proportion rather than counts
(this is done in R using the argument freq=FALSE).
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Figure 1-4. Density of State Murder Rates

Example 1-1. Density Estimation

Density estimate is a rich topic with a long history in statistical literature. In fact, over
twenty R packages have been published that offer functions for density estimation. ???
give a comprehesive review of R packages, with a particular recommendation for ASH
or KernSmooth. For many data science problems, there is no need to worry about the
various types of densities estimates and it suffices to use the base functions.

Key Ideas
1. A frequency histogram plots frequency counts on the y-axis and variable values

on the x-axis; it gives a sense of the distribution of the data at a glance.
2. A frequency table is a tabular version of the frequency counts in a histogram.
3. A boxplot, with the top and bottom of the box at the 75th and 25th percentiles,

respectively, also gives a quick sense of the distribution of the data; it is often
used in side-by-side displays to compare distributions.

4. A density plot is a smoothed version of a histogram; it requires a function to esti‐
mate a plot based on the data (multiple estimates are possible, of course).

34 | Chapter 1: Exploratory Data Analysis



Further reading
1. A step-by-step guide to creating a boxplot can be found here: http://

www.oswego.edu/~srp/stats/bp_con.htm
2. Density estimation in R is covered in Henry Deng and Hadley Wickham’s paper

http://vita.had.co.nz/papers/density-estimation.pdf
3. R-Bloggers has a useful post on histograms in R, including customization ele‐

ments, such as binning (breaks): http://www.r-bloggers.com/basics-of-histograms/
4. A similar post on box-plots in R can be found here: http://www.r-bloggers.com/

box-plot-with-r-tutorial/

Exploring Binary and Categorical Data
For categorical data, simple proportions or percentages tell the story of the data.

Key Terms for Exploring Categorical Data
Mode

The most commonly occurring category or value in a dataset.

Expected Value
When the categories can be associated with a numeric value, it gives an average
value based on the probability of occurence of a category.

Bar Charts
The frequency or proportion for each category plotted as bars.

Pie Charts
The frequency or proportion for each category plotted as wedges in a pie.

Getting a summary of a binary variable, or a categorical variable with a few cate‐
gories, is a fairly easy matter - we just figure out the proportion of 1’s, or of the
important categories. For example, Table 1-5 shows the percentage of delayed flights
by the cause of delay at Dallas/Fort Worth airport since 2010. Delays are categorized
as being due to factors under carrier control, air traffic control system delays (ATC),
weather, security or a late inbound aircraft.

Table 1-5. Percentage of delays by cause of delay at Dallas-Ft. Worth airport.

Carrier ATC Weather Security Inbound

23.02 30.40 4.03 0.12 42.43
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Figure 1-5. Bar plot airline delays by airport.

Bar charts are a common visual tool for displaying a single categorical variable, often
seen in the popular press. Categories are listed on the x-axis, and frequencies or pro‐
portions on the y-axis. Figure 1-5 shows the airport delays per year by cause of delay
for Dallas/ Fort Worth, and is produced with the R function barplot

barplot(as.matrix(dfw)/6, cex.axis=.5)

Note that a bar chart resembles a histogram; in a bar chart the x-axis represents dif‐
ferent categories of a factor variable, while in a histogram the x axis represents values
of a single variable on a numeric scales. In a histogram, the bars are typically shown
touching each other, with gaps indicating values that did not occur in the data. In a
bar chart, the bars are shown separate from one another.

An alternative to bar charts are pie charts, although statisticians and data visualiza‐
tion experts generally eschew pie charts as less visually informative (see ???).
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Numerical Data as Categorical Data

In “Exploring the Data Distribution” on page 29, we looked at fre‐
quency tables based on binning the data. This implicitly converts
the numeric data to an ordered factor. In this sense, histograms and
barcharts are similar, except that the categories on the x-axis in the
bar chart are not ordered. Converting numeric data to categorical
data is an important and widely used step in data analysis since it
reduces the complexity (and size) of the data. This aids in the dis‐
covery of relationships between features, particularly at the initial
stages of an analysis.

Mode
The mode is the value, or values in case of a tie, that appears most often in the data.
For example, the mode of the cause of delay at Dallas/Fort Worth airport is
“Inbound”. As another example, in most parts of the United States, the mode for reli‐
gious preference would be Christian. The mode is a simple summary statistic for cat‐
egorical data, and it is generally not used for numeric data.

Expected Value
A special type of categorical data is data in which the categories represent, or can be
mapped to, discrete values on the same scale. A marketer for a new cloud technology,
for example, offers two levels of service, one priced at $300/month and another at
$50/month. The marketer offers free webinars to generate leads, and the firm figures
that 5% of the attendees will sign up for the $300 service, 15% for the $50 service, and
80% will not sign up for anything. These data can be summed up, for financial pur‐
poses, in a single “expected value,” which is a form of weighted mean in which the
weights are probabilities.

The expected value is calculated as follows

1. Multiply each outcome by its probability of occurring.
2. Sum these values.

In the cloud service example, the expected value of a webinar attendee is thus $22.50
per month, calculated as follows:

EV = 0 . 05 300 + 0 . 15 50 + 0 . 80 0 = 22 . 5

The expected value is really a form of weighted mean: it adds the ideas of future
expectations and probability weights, often based on subjective judgment. Expected
value is a fundamental concept in business valuation and capital budgeting, for exam‐
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ple, the expected value of 5-years of profits from a new acquisition, or the expected
cost savings from new patient management software at a clinic.

Key Ideas
1. Categorical data is typically summed up in proportions, and can be visualized in

a bar chart.
2. Categories might represent distinct things (apples and oranges, male and female),

they might represent levels of a factor variable (low, medium and high), or they
might represent numeric data that has been binned.

3. Expected value is the sum of values times their probability of occurance, often
used to sum up factor variable levels.

Further Reading
1. No statistics course is complete without a lesson on misleading graphs, which

often involve bar charts and pie charts. Here’s one: http://passyworldofmathemat
ics.com/misleading-graphs/

Correlation
Exploratory data analysis in many modeling projects (whether in data science or in
research) involves examining correlation among predictors, and between predictors
and a target variable. Variables X and Y (each with measured data) are said to be posi‐
tively correlated if high values of X go with high values of Y, and low values of X go
with low values of Y. If high values of X go with low values of Y, and vice-versa, the
variables are negatively correlated.

Key Terms for Correlation
Correlation coefficient

A metric that measures the extent to which numeric variables are associated with
one another (ranges from -1 to +1).

Correlation matrix
A table where the variables are shown on both rows and columns, and the cell
values are the correlations between the variables.
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Scatterplot
A plot in which the x-axis is the value of one variable, and the y-axis the value of
another.

Consider these two variables, perfectly correlated in the sense that each goes from low
to high:

V1: {1, 2, 3} V2: {4, 5, 6}

The vector sum of products is 4+10+18 = 32. Now try shuffling one of them and
recalculating - the vector sum of products will never higher than 32. So this sum of
products could be used as a metric - the observed sum of 32 could be compared to
lots of random shufflings (in fact, this idea relates to a resampling based estimate:
see ???). Values produced by this metric, though, are not that meaningful, except by
reference to the resampling distribution.

More useful is a standardized variant: the correlation coefficient, which gives an esti‐
mate of the correlation between two variables that always lies on the same scale. Pear‐
son’s correlation coefficient is computed by multiplying deviations from the mean for
variable 1 times those for variable 2, and dividing by the product of the standard
deviations:

r =
∑i = 1

N xi − x yi − y
N − 1 sxsy

Note that we divide by N-1 instead of N: see Degrees of Freedom, and N or N-1? for
more details. The correlation coefficient always lies between +1 (perfect positive cor‐
relation) and -1 (perfect negative correlation); 0 indicates no correlation.

Variables can have an association that is not linear, in which case the correlation coef‐
ficient may not be a useful metric. The relationship between tax rates and revenue
raised is an example - as tax rates increase from 0, the revenue raised also increases.
However, once tax rates reach a high level, and approach 100%, tax avoidance increa‐
ses and tax revenue actually declines.

Table 1-6. Correlation between telecommunication stock returns.

T CTL FTR VZ LVLT

T 1.000 0.475 0.328 0.678 0.279

CTL 0.475 1.000 0.420 0.417 0.287

FTR 0.328 0.420 1.000 0.287 0.260
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T CTL FTR VZ LVLT

VZ 0.678 0.417 0.287 1.000 0.242

LVLT 0.279 0.287 0.260 0.242 1.000

Table 1-6, called a correlation matrix, shows the correlation between the daily returns
for telecommunication stocks from July, 2012 through June 2015. From the table, you
can see that Verizon (VZ) and ATT (T) have the highest correlation. Level Three
(LVLT), which is an infrastructure company, has the lowest correlation.

A table of correlations, such as Table 1-6, is commonly plotted to give a visual display
of the relationship between multiple variables. Figure 1-6 shows the correlation
between the daily returns for major exchange traded funds (ETF’s). In R, this is easily
created using the package corrplot:

etfs <- sp500_px[row.names(sp500_px)>"2012-07-01",
                 sp500_sym[sp500_sym$sector=="etf", 'symbol']]
library(corrplot, method = "ellipse")
corrplot(cor(etfs))

Figure 1-6. Correlation between ETF Returns

The ETF’s for the S&P 500 (SPY) and the Dow Jones Index (DIA) have a high correla‐
tion. Similary, the QQQ and the XLK, composed mostly of technology companies,
are postively correlated. Defensive ETF’s, such as those tracking gold prices (GLD),
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oil prices (USO), or market volatility (VXX) tend to be negatively correlated with the
other ETF’s. The orientation of the ellipse indicates whether two variables are posi‐
tively correlated (ellipse is pointed right) or negatively correlated (ellipse is pointed
left). The shading and width of the ellipse indicate the strength of the association:
thinner and darker ellipses correspond to stronger relationships.

Like the mean and standard deviation, the correlation coefficient is sensitive to outli‐
ers in the data. Software packages offer robust alternatives to the classical correlation
coefficient. For example, the R function cor has a trim argument similar to that for
computing a trimmed mean (see ???).

Example 1-2. Other Correlation Estimates

Statisticians have long ago proposed other types of correlation coefficients, such as
Spearman’s rho or Kendall’s tau. These are correlation coefficients based on the rank of
the data. Since they work with ranks rather than values, these estimates are robust to
outliers and can handle certain types of non-linearities. However, data scientists can
generally stick to Pearson’s correlation coefficient, and its robust alternatives, for
exploratory analysis. The appeal of rank-based estimates is mostly for smaller data
sets, and specific hyphothesis tests.

Scatterplots
The standard way to visualize the relationship that two measured data variables have
is with a scatterplot. The x-axis represents one variable, the y-axis another, and each
point on the graph is a record. See Figure 1-7 for a plot between the daily returns for
ATT and Verizon. This is produced in R with the command

plot(telecom$T, telecom$VZ, xlab="T", ylab="VZ")

The returns have a strong positive relationship: on most days, when both stocks go up
or go down in tandem. There are very few days where one stock goes down signifi‐
cantly while the other stock goes up (and visa versa).
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Figure 1-7. Scatter plot between returns for ATT and Verizon

Key Ideas for Correlation
1. The correlation coefficient measures the extent to which two variables are associ‐

ated with one another
2. When high values of v1 go with high values of v2, v1 and v2 are positively associ‐

ated
3. When high values of v1 are associated with low values of v2, v1 and v2 are nega‐

tively associated
4. The correlation coefficient is a standardized metric so that it always ranges from

-1 (perfect negative correlation) to +1 (perfect positive correlation
5. 0 indicates no correlation, but be aware that random arrangements of data will

produce both positive and negative valies for the correlation coefficient just by
chance

Exploring Two or More Variables
Familiar estimators like mean and variance look at variables one at a time (univariate
analysis). Correlation analysis (see “Correlation” on page 38) is an important method
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that compare two variables (bivariate analysis). In this section we look at additional
estimates and plots, and at more than two variables (multivariate analysis).

Key Terms for Exploring Two or More Variables
Contingency Tables

A tally of counts between two or more categorical variables.

Hexagonal Binning
A plot of two numeric variables with the records binned into hexagons.

Contour Plots
A plot showing the density of two numeric variables like a topographical map.

Violin Plots
Similar to a boxplot but showing the density estimate.

As in a univariate analysis, bivariate analysis involves both computing summary sta‐
tistics and producing visual displays. The appropriate type of bivariate or multivariate
analysis depends on the nature of the data: numeric versus categorical.

Hexagonal Binning and Contours (plotting numeric vs. numeric)
Scatterplots are fine when there are a relatively small number of data values. The plot
of stock returns in Figure 1-7 only involves about 750 points. For data sets with hun‐
dreds of thousands or millions of records, a scatterplot will be too dense and we need
a different way to visualize the relationship.

Figure 1-8 is a hexagon binning plot of the relationship between the finished square
feet versus the tax assessed value for homes in King County, Washington. Rather than
plotting points, which would appear as a monolithic dark cloud, the records are grou‐
ped into hexagonal bins and the hexagons are plotted with a color indicating the
number of records in that bin. In this chart, the positive relationship between square
feet and tax assessde value is clear. An interesting feature is the presence of a second
cloud above the main cloud where homes have the same square footage as those in
the main cloud, but a higher tax assessed value.

Figure 1-8 was generated by the powerful R package ggplot2 developed by Hadley
Wickham ???. ggplot2 is one of several new software libraries for advanced explora‐
tory visual analysis of data: see “Visualizing Multiple Variables” on page 48.

library(ggplot)
  ggplot(house0, aes(x=FinishedSquareFeet, y=TaxAssessedValue)) +
  stat_binhex(colour="white") +
  theme_bw() +

Exploring Two or More Variables | 43



  scale_fill_gradient(limits=c(0, 9000), low="white", high="blue") +
  labs(x="Finished Square Feet", y="Tax Assessed Value")

Figure 1-8. Hexagonal binning for tax assessed value versus finished square feet

Figure 1-9 uses contours overlaid on a scatterplot to visualize the relationship
between two numeric variables. The contours are essentially a topographical map to
two variables; each contour band represents a specific density of points, increasing as
one nears a “peak.” This plot shows a similar story as Figure 1-8: there is a secondary
peak “north” of the main peak. This chart was also created using ggplot2:

library(ggplot)
house %>%
  filter(TaxAssessedValue < 750000, FinishedSquareFeet>100,
         FinishedSquareFeet<4000) %>%
  ggplot(aes(FinishedSquareFeet, TaxAssessedValue)) +
  theme_bw() +
  geom_point(colour="blue", alpha=0.2) +
  geom_density2d(colour="red") +
  labs(x="Finished Square Feet", y="Tax Assessed Value")
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Figure 1-9. Contour plot for tax assessed value versus finished square feet

Other types of charts are used to show the relationship between two numeric vari‐
ables, such as heat maps. Heat maps, hexagonal binning and contour plots all give a
visual representation of a two-dimensional density. In this way, they are natural ana‐
logs to histograms and density plots.

Two Categorical Variables
A useful way to summarize two categorical variable is a contingency table - a table of
counts by category. Table 1-7 shows the contingency table between the grade of a per‐
sonal loan and the outcome of that loan. This is taken from data provided by Lending
Club, a leader in the peer-to-peer lending business (provide reference here). The
grade goes from A (high) to G (low). The outcome is either paid off, current, late or
charged off (the balance of the loan is not expected to be collected). This table shows
the count and row percentages. High grade loans have a very low late/charge-off per‐
centage as compared with lower grade loans. Contingency tables can look at just
counts, or also include column and total precentages. Pivot tables in Excel are per‐
haps the most common tool used to create contingency table. Table 1-7 was created in
R using the CrossTable function in the descr package:

library(descr)
CrossTable(loans$grade, loans$status, prop.c=FALSE,
                    prop.chisq=FALSE, prop.t=FALSE)
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Table 1-7. Contingency table of loan grade and status

Grade Fully Paid Current Late Charged Off Total

A 20726 52059 494 1588 74867

0.277 0.695 0.007 0.021 0.161

B 31785 97608 2149 5387 136929

0.232 0.713 0.016 0.039 0.294

C 23784 92448 2895 6166 125293

0.190 0.738 0.023 0.049 0.269

D 14040 55293 2421 5135 76889

0.183 0.719 0.031 0.067 0.165

E 6091 25346 1421 2899 35757

0.170 0.709 0.040 0.081 0.077

F 2376 8676 622 1556 13230

0.180 0.656 0.047 0.118 0.028

G 655 2042 206 419 3322

0.197 0.615 0.062 0.126 0.007

Total 99457 333472 10208 23150 466287

Categorical and Numeric Data
Boxplots (see “Percentiles and Boxplots” on page 30) are a simple way to visually
compare the distributions of a numeric variable grouped according to a categorical
variable. For example, we might want to compare how the percentage of flight delays
varies across different airlines. Figure 1-10 shows the percentage of flights in a month
that were delayed where the delay was within control of the carrier.

boxplot(pct_delay ~ airline, data=airline_stats, ylim=c(0,30))
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Figure 1-10. Boxplot of percent of airline delays by carrier.

Alaska stands out as having the fewest delays while American has the most delays: the
lower quartile for American is higher than the upper quartile for Alaska.

A violin plot, introduced by ???, is an enhancement to the boxplot and plots the den‐
sity estimate with the density on the y-axis. A mirror image of the density is flipped
over and the resulting shape is filled in creating an image resembling a violin. The
advantage of a violin plot is that it can show nuances in the distribution not percepti‐
ble in a boxplot. Often, a violin plot is combined with a boxplot, as in Figure 1-11.
This was created using ggplot2:

ggplot(data=airline_stats, aes(airline, pct_delay)) +
  geom_violin(fill="lightblue") +
  geom_boxplot( alpha=.2) +
  ylim(0, 30)

The violin plot shows a concentration in the distribution near zero for Alaska, and to
a lesser extent, Delta. This phenomenon is not as obvious in the boxplot.
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Figure 1-11. Combination of boxplot and violin plot of percent of airline delays by car‐
rier.

Visualizing Multiple Variables
The types of charts used to compare two variables - scatterplots, hexagonal binning,
and boxplots - are readily extended to more variables using the notion of condition‐
ing. As an example, consider the Figure 1-8 that shows the relationship between fin‐
ished square feet and tax assessed value. We observed that there appears to be a
cluster of homes that have higher tax assessed value per square foot. Diving deeper,
Figure 1-12 accounts for the effect of location by plotting the data for a set of zip
codes. Now the picture is much clearer: tax assessed value is much higher in certain
zip code (98112, 98105) as opposed to other (98108, 98057). This disparity gives rise
to the clusters observed in Figure 1-8.

Figure 1-12 was created using ggplot2 using the idea of facets, or a conditioning vari‐
able (in this case zip code):

  ggplot(house1, aes(x=FinishedSquareFeet, y=TaxAssessedValue)) +
  stat_binhex(colour="white") +
  theme_bw() +
  scale_fill_gradient( low="white", high="blue") +
  labs(x="Finished Square Feet", y="Tax Assessed Value") +
  facet_wrap("zip")
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Figure 1-12. Tax assess value versus finished square feet by zip code.

The concept of conditioning variables in a graphics system was pioneered with Trellis
graphics developed by Rick Becker, Bill Cleveland and others at Bell Labs ???. This
idea has propogated to various modern graphics systems, such as the lattice (???) and
ggplot2 packages in R and the Seaborn (???) and Bokeh (???) modules in python. Con‐
ditioning variables are also integral to business intelligence platforms such as Tableau
and Spotfire. With the advent of vast computing power, modern visualization plat‐
forms have moved well beyond the humble beginnings of exploratory data analysis.
However, key concepts and tools developed over the years still form a foundation for
these systems.

Key Ideas
1. Hexagonal binning and contour plots are useful tools that permit graphical

examination of two numeric variables at a time, without being overwhelmed by
huge amounts of data.

2. Contingency tables are the standard tool for looking at the counts of two catego‐
rical variables.

3. Box plots and violin plots allow you to plot a numeric variable against a categori‐
cal variable.

Exploring Two or More Variables | 49



Further Reading
1. Ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham, the creator of

ggplot2 (Springer, 2009)
2. Josef Fruehwald has a web-based tutorial on ggplot2: http://www.ling.upenn.edu/

~joseff/avml2012/

Conclusion
With the development of exploratory data analysis (EDA), pioneered by John Tukey,
statistics set a foundation that was a precursor to the field of data science. The key
idea of EDA: the first and most important step in any project based on data is to look
at the data. By summarizing and visualizing the data, you can gain valuable intuition
and understanding of the project.

This chapter has reviewed several concepts, ranging from simple metrics, such as esti‐
mates of location and variability, to rich visual displays to explore the relationships
between multiple variables as in Figure 1-12. The rich set of tools and techniques
being developed by the open source community, combined with the expressiveness of
the R and Python languages, has created a plethora of ways to explore and analyze
data. Exploratory analysis should be a cornerstone of any data science project.
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CHAPTER 2

Data and Sampling Distributions

A popular misconception holds that the era of Big Data means the end of a need for
sampling. In fact, the proliferation of data of varying quality and relevance reinforces
the need for sampling as a tool to work efficiently with a variety of data, and mini‐
mize bias. Even in a Big Data project, predictive models are typically developed and
piloted with samples. Samples are also used in tests of various sorts (e.g. pricing, web
treatments).
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Figure 2-1. Population versus sample

Figure Figure 2-1 shows a schematic that underpins the concepts in this chapter. The
left-hand side represents a population which, in statistics, is assumed to follow an
underlying but unknown distribution. The only thing available is the sample data,
and its empirical distribution, shown on the right-hand side. To get from the left-
hand side to the right-hand side, a sampling procedure is used represented by red-
dash arrows. Traditional statistics focused very much on the left-hand side, using
theory based on strong assumptions about the population. Modern statistics has
moved to the right-hand side where such assumptions are not needed.

In general, data scientists need not worry about the theoretical nature of the left-hand
side, and instead focus on the sampling procedures and the data at hand. There are
some notable exceptions. Sometimes data is generated from a physical process that
can be modeled. The simplest example is flipping a coin: this follows a binomial dis‐
tribution. In these cases, we can gain additional insight by using our understanding
of the population.
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Random sampling and sample bias
A sample is a subset of data from a larger dataset; statisticians call this larger dataset
the population. A population in statistics is not the same thing as in biology - it is a
large, defined but sometimes theoretical or imaginary, set of data.

Key Terms for Random Sampling
Sample

A subset from a larger dataset

Population
The larger dataset, or idea of a dataset

N (n)
The size of the population (sample)

Random sampling
Drawing elements into a sample at random

Stratified sampling
Dividing the population into strata and randomly sampling from each strata.

Simple random sample
The sample that results from random sampling without stratifying the popula‐
tion.

Sample bias
A sample that misrepresents the population

Random sampling is a process in which each available member of the population
being sampled has an equal chance of being chosen for the sample at each draw. The
sample that results is called a simple random sample. Sampling can be done with
replacement, in which observations are put back in the population after each draw for
possible future reselection. Or it can be done without replacement, in which case
observations, once selected, are unavailable for future draws.

Data quality often matters more than data quantity when making an estimate or a
model based on a sample. Data quality in data science involves completeness, consis‐
tency of format, cleanliness and accuracy of individual data points. Statistics adds the
notion of representativeness.

The classic example is the Literary Digest poll of 1936 that predicted a victory of Al
Landon against Franklin Roosevelt. The Literary Digest, a leading periodical of the
day, polled its entire subscriber base, plus additional lists of individuals, a total of over
10 million, and predicted a landslide victory for Landon. George Gallup, founder of
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the Gallup Poll, conducted bi-weekly polls of just 2000, and accurately predicted a
Roosevelt victory. The difference lay in the selection of those polled.

The Literary Digest opted for quantity, paying little attention to the method of selec‐
tion. They ended up polling those with relatively high socio-economic status (their
own subscribers, plus those who, by virtue of owning luxuries like telephones and
automobiles, appeared in marketers’ lists). The result was sample bias- the sample was
different in some meaningful non-random way from the larger population it is meant
to represent. The term “non-random” is important - hardly any sample, including
random samples, will be exactly representative of the population. Sample bias occurs
when the difference is meaningful, and can be expected to continue for other samples
drawn in the same way as the first.

Bias
Statistical bias refers to measurement or sampling errors that are systematic and pro‐
duced by the measurement or sampling process. An important distinction should be
made between errors due to random chance, and errors due to bias. Consider the
physical process of a gun shooting at a target. It will not hit the absolute center of the
target every time, or even much at all. An unbiased process will produce error, but it
is random and does not tend strongly in any direction (see Figure 2-2). The results
shown in Figure 2-3 show a biased process - there is still random error in both the x
and y direction, but there is also a bias. Shots tend to fall in the right upper quadrant.

Figure 2-2. Scatter of shots from a gun with true aim
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Figure 2-3. Scatterplot of shots from a gun with biased aim

Bias comes in different forms, and may be observable or invisible. When a result does
suggest bias (e.g. by reference to a benchmark, or actual values), it is often an indica‐
tor that a statistical or machine learning model has been misspecified, or an impor‐
tant variable left out.

Random Selection
To avoid the problem of sample bias that led the Literary Digest to predict Landon
over Roosevelt, George Gallup opted for more scientifically-chosen methods to ach‐
ieve a sample that was representative of the US voter. There are now a variety of
methods to achieve representativeness, but at the heart of all of them lies random
sampling.
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Figure 2-4. George Gallup, catapaulted to fame by the Literary Digest’s “big data” failure

Random sampling is not always easy. Proper definition of an accessible population is
key. Suppose we want to generate a representative profile of customers and we need
to conduct a pilot customer survey. The survey needs to be representative but is labor
intensive.

First we need to define who is a customer. We might select all customer records
where purchase amount > 0. Do we include all past customers? Do we include
refunds? Internal test purchases? Resellers? Both billing agent and customer?

Next we need to specify a sampling procedure. It might be “select 100 customers at
random.” Where a sampling from a flow is involved (e.g. realtime customer transac‐
tions, or web visitors), timing considerations ma be important (e.g. a web visitor at 10
am on a weekday may be different from a web visitor at 10 pm on a weekend).

In stratified sampling, the population is divided up into strata, and random samples
are taken from each stratum. Political pollsters might seek to learn the electoral pref‐
erences of whites, blacks and hispanics. A simple random sample taken from the pop‐
ulation would yield too few blacks and hispanics, so those strata could be
overweighted in stratified sampling to yield equivalent sample sizes.

56 | Chapter 2: Data and Sampling Distributions



Size Versus Quality
Time and effort spent on random sampling not only reduce bias, but also allow
greater attention to data quality. For example, missing data and outliers may contain
useful information. It might be prohibitively expensive to track down missing values,
or evaluate outliers, in millions of records, but doing so in a sample of several thou‐
sand records may be feasible.

The flip side of this effect is when you have sparse data. Consider the search queries
received by Google, where columns are terms, rows are individual search queries, and
cell values are either 0 or 1, depending on whether a query contains a term. The goal
is to determine the best predicted search destination for a given query. There are over
150,000 words in the English language, and Google processes over 1 trillion queries
per year. This yields a huge matrix, the vast majority of whose entries are “0.”

This is a true Big Data problem - only when such enormous quantities of data are
accumulated can effective search results be returned for most queries. And the more
data accumulates, the better the results. For popular search terms this is not such a
problem - effective data can be found fairly quickly for the handful of extremely pop‐
ular topics trending at a particular time. The real value of modern search technology
lies in the ability to return detailed and useful results for a huge variety of search
queries, including those that occur only with a frequency, say, of one in a million.

Consider the search phrase “Ricky Ricardo and Little Red Riding Hood.” In the early
days of the internet, this query would probably have returned results on Ricky
Ricardo the band leader, the television show I Love Lucy in which he starred, and the
children’s story Little Red Riding Hood. Later, now that trillions of search queries have
been accumulated, this search query returns the exact I Love Lucy episode in which
Ricky narrates, in dramatic fashion, the Little Red Riding hood story to his infant son
in a comic mix of English and Spanish.

Keep in mind that the number of actual pertinent records - ones in which this exact
search query, or something very similar, appears (together with information on what
link people ultimately clicked on) might need only be in the thousands to be effective.
However, many trillions of data points are needed in order to obtain these pertinant
records (and random sampling, of course will not help). See also “Long-Tailed Distri‐
butions” on page 77.

Sample Mean Versus Population Mean
The symbol x is used to represent the mean of a sample from a population (pro‐
nounced x-bar), whereas μ is used to represent the mean of a population. Why make
the distinction? Information about samples is observed, and information about large
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populations is often inferred from smaller samples. Statisticians like to keep the two
things separate in the symbology.

Key Ideas
1. Even in the era of Big Data, random sampling remains an important arrow in the

data scientist’s quiver
2. Bias occurs when measurements or observations are systematically in error

because they are not representative of the full population
3. Data quality is often more important than data quantity, and random sampling

can reduce bias and facilitate quality improvement that would be prohibitively
expensive

Further Reading
1. A useful review of sampling procedures can be found in Ronald Fricker’s chapter

“Sampling Methods for Web and E-mail Surveys,” found in the Sage Handbook of
Online research Methods. This chapter includes a review of the modifications to
random sampling that are often used for practical reasons of cost or feasibility.

2. The story of the Literary Digest poll failure can be found here: http://www.capital
century.com/1935.html

Selection bias
To paraphrase Yogi Berra, “If you don’t know what you’re looking for, look hard
enough, and you’ll find it.”

Selection bias refers to the practice of selectively choosing data - consciously or
unconsciously - in a way that that leads to a conclusion that is misleading or ephem‐
eral.

Key Terms
Bias

Systematic error

Data snooping
Extensive hunting through data in search of something interesting
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Massive search effect
Bias or non-reproducibility resulting from repeated data modeling, or modeling
data with large numbers of predictor variables

If you specify a hypothesis and conduct a well-designed experiment to test it, you can
have high confidence in the conclusion. Such is often not the case, however. Often,
one looks at available data and tries to discern patterns. But is the pattern for real, or
just the product of “data snooping,” or extensive hunting through the data until some‐
thing interesting emerges? There is a saying among statisticians, “if you torture the
data long enough, sooner or later it will confess.”

The difference between a phenomenon that you verify when you test a hypothesis
using an experiment, versus a phenomenon that you discover by perusing available
data, can be illuminated with this thought experiment:

Imagine that a person tells you she can flip a coin and have it land heads on the next
10 tosses. You challenge her (the equivalent of an experiment), and she proceeds to
toss it 10 times, all landing heads. Clearly you ascribe some special talent to her - the
probabilty that 10 coin tosses will land heads just by chance is 1 in 1000.

Now imagine that the announcer at a sports stadium asks the 20,000 people in attend‐
ance each to toss a coin 10 times, and report to an usher if they get 10 head in a row.
The chance that somebody in the stadium will get 10 heads is extremely high (more
than 99% - it’s 1 minus the probability that nobody gets 10 heads). Clearly, selecting,
after the fact, the person (or persons) who get 10 heads at the stadium does not indi‐
cate they have any special talent - it’s most likely luck.

Since repeated review of large data sets is a key value proposition in data science,
selection bias is something to worry about. A form of selection bias of particular con‐
cern to data scientists is what John Elder (founder of Elder Research, a respected data
mining consultancy) calls the "massive search effect.” If you repeatedly run different
models and ask different questions with a large data set, you are bound to find some‐
thing interesting. Is the result you found truly something interesting, or is it the
chance outlier?

We can guard against this by using a holdout set, and sometimes more than one hold‐
out set, against which to validate performance. Elder also advocates the use of what
he calls “target shuffling” (a permutation test, in essence) to test the validity of predic‐
tive associations that a data mining model suggests.

Typical forms of selection bias in statistics, in addition to the massive search effect,
include non-random sampling (see sampling bias), cherry-picking data, selection of
time intervals that accentuate a partiular statistical effect and stopping an experiment
when the results look “interesting.”
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Regression to the mean
Regression to the mean refers to a phenomenon involving successive measurements
on a given variable: extreme observations tend to be followed be more central ones.
Attaching special focus and meaning to the extreme value can lead to a form of selec‐
tion bias.

Sports fans are familiar with the “Rookie of the year, sophomore slump” phenom‐
enon. Among the athletes who begin their career in a given season (the rookie class),
there is always one who performs better than all the rest. Generally, this “rookie of the
year” does not do as well in his second year. Why not?

In nearly all major sports, at least those played with a ball or puck, there are two ele‐
ments that play a role in overall performance:

• skill
• luck

Regression to the mean is a consequence of a particular form of selection bias. When
we select the rookie with the best performance, skill and good luck are probably con‐
tributing. In his next season, the skill will still be there but, in most cases, the luck will
not, so his performance will decline - it will regress. The phenomenon was first iden‐
tified by Francis Galton in 1886 ???, who wrote of it in connection with genetic ten‐
dencies: e.g., the children of extremely tall men tend not to be as tall as their father.
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Figure 2-5. Galton’s study that identified the phenomena of regression to the mean.

Regression to the mean, meaning to “go back,” is distinct from the
statistical modeling method of linear regression, in which a linear
relationship is estimated between predictor variables and an out‐
come variable.

Key Ideas
1. Specifying a hypothesis, then collecting data following randomization and ran‐

dom sampling principles ensures against bias.
2. All other forms of data analysis run the risk of bias resulting from the data collec‐

tion/analysis process (repeated running of models in data mining, data snooping
in research, after-the-fact selection of interesting events).
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Further Reading
1. Christopher J. Pannucci and Edwin G. Wilkins’ article “Identifying and Avoiding

Bias in Research” in (surprisingly) Plastic and Reconstructive Surgery (August
2010) has an excellent review of various types of bias that can enter into research,
including selection bias.

2. Michael Harris’s article “Fooled by Randomness Through Selection Bias” (http://
systemtradersuccess.com/fooled-by-randomness-through-selection-bias/) provides
an interesting review of selection bias considerations in stock market trading
schemes, from the perspective of traders.

Sampling Distribution of a Statistic
The term sampling distribution of a statistic refers to the distribution of some sample
statistic, over many samples drawn from the same population. Much of classical sta‐
tistics is concerned with making inference from (small) samples to (very large) popu‐
lations.

Key Terms
Sample statistic

A metric calculated for a sample of data drawn from a larger population

Data distribution
The frequency distribution of individual values in a data set

Sampling distribution
The frequency distribution of a sample statistic over many samples or resamples

Central Limit Theorem
The tendency of the sampling distribution to take on a normal shape as sample
size rises

Standard error
The variability (standard deviation) of a sample statistic over many samples (not
to be confused with standard deviation, which, by itself, refers to variability of
individual data values)

Typically a sample is drawn with the goal of measuring something (with a sample sta‐
tistic) or modeling something (with a statistical or machine learning model). Since
our estimate or model is based on a sample, it might be in error - it might be different
if we were to draw a different sample. We are therefore interested in how different it
might be - a key concern is sampling variability. If we had lots of data, we could draw
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additional samples and observe the distribution of a sample statistic, directly. Typi‐
cally, we will calculate our estimate or model using as much data as are easily avail‐
able, so the option of drawing additional samples from the population is not readily
available.

It is important to distinguish between the distribution of the indi‐
vidual data points - the data distribution, and the distribution of a
sample statistic - the sampling distribution.

The distribution of a sample statistic such as the mean is likely to be more regular and
bell-shaped than the distribution of the data themselves. The larger the sample that
the statistic is based on, the more this is true. Also, the larger the sample, the nar‐
rower the distribution of the sample statistic.

This is illustrated in the following example using a annual income for loan applicants
to Lending Club (see ??? for a description of the data). Take three samples from this
data: a sample of 1000 values, a sample of 1000 means of 5 values and a sample of
1000 means of 20 values. Then plot a histogram of each sample to produce
Figure 2-6.
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Figure 2-6. Histogram of annual incomes of 1000 loan applicants

The histogram of the individual data values is broadly spread out and skewed
towards higher values as is to be expected with income data. The histograms of the
means of 5 and 20 are increasingly compact and more bell-shaped. Here is the R code
to generate these histograms, using the visualization backage ggplot2.

library(ggplot2)
loans_income <- read.csv("/Users/andrewbruce1/book/loans_income.csv")[,1]
# take a simple random sample
samp_data <- data.frame(income=sample(loans_income, 1000),
                        type='data_dist')
# take a sample of means of 5 values
samp_mean_05 <- data.frame(
  income = tapply(sample(loans_income, 1000*5),
                  rep(1:1000, rep(5, 1000)), FUN=mean),
  type = 'mean_of_5')
# take a sample of means of 20 values
samp_mean_20 <- data.frame(
  income = tapply(sample(loans_income, 1000*20),
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                  rep(1:1000, rep(20, 1000)), FUN=mean),
  type = 'mean_of_20')
# bind the data.frames and convert type to a factor
income <- rbind(samp_data, samp_mean_05, samp_mean_20)
income$type = factor(income$type,
                     levels=c('data_dist', 'mean_of_5', 'mean_of_20'),
                     labels=c('Data', 'Mean of 5', 'Mean of 20'))
# plot the histograms
ggplot(income, aes(x=income)) +
  geom_histogram(bins=40) +
  facet_grid(type ~ .)

Central Limit Theorem
This phenomenon is termed the Central Limit Theorem. It says that the means drawn
from multiple samples will be shaped like the familiar bell-shaped normal curve (see
“Normal distribution” on page 74), even if the source population is not normally-
distributed, provided that the sample size is large enough and the departure of the
data from normality is not too great. The Central Limit Theorem allows normal-
approximation formulas like the t-distribution to be used in calculating sampling dis‐
tributions for inference, i.e., confidence intervals and hypothesis tests.

The Central Limit Theorem receives much attention in traditional statistics texts
because it underlies the machinery of hypothesis tests and confidence intervals,
which themselves consume half the space in such texts. Data scientists should be
aware of this role, but, since formal hypothesis tests and confidence intervals play a
small role in data science, and the bootstrap is available in any case, the Central Limit
Theorem is not so central in the practice of data science.

Standard error
The standard error is a single metric that sums up the variability in the sampling dis‐
tribution for a statistic. The standard error can be estimated using a statistic based on
the standard deviation s of the sample values, and the sample size n:

Standard Error = SE = s
n

As the sample size increases, the standard error decreases, corresponding what was
observed in Figure 2-6. The relationship between standard error and sample size is
sometimes referred to as the square-root of n rule: in order to reduce the standard
error by a factor of 2, the sample size must be increased by a factor of 4.

The validity of the standard error formula arises from the central limit theorem (see
“Central Limit Theorem” on page 65). In fact, you don’t need to rely on the central
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limit theorem to understand standard error. Consider the following approach to
measure standard error:

1. Collect a number of brand new samples from the population.
2. For each new sample, calculate the statistic (e.g., mean).
3. Estimate the standard error by the standard deviation of the statistics computed

in step 2.

In practice, the above approach of collecting new samples to estimate the standard
error is typically not feasible (and statistically very wasteful). Fortunately, it turns out
that it is not necessary to draw brand new samples; instead it is possible to use boot‐
strap resamples (see “The bootstrap” on page 67). In modern statistics, the bootstrap
has become the standard way to to estimate standard error. It can be used for virtually
any statistic and does not rely on the central limit theorem or other distributional
assumptions.

Standard Deviation vs. Standard Error

Do not confuse standard deviation (which measures the variability
of individual data points) with standard error (which measures the
variability of a sample metric).

Key Ideas
1. The frequency distribution of a sample statistic tells us how that metric would

turn out differently from sample to sample
2. This sampling distribution can be estimated via the bootstrap, or via formulas

that rely on the central limit theorem
3. A key metric that sums up the variability of a sample statistic is its standard error

Further Reading
1. David Lane’s online multimedia resource in statistics has a useful simulation that

allows you to select a sample statistic, a sample size and number of iterations and
visualize a histogram of the resulting frequency distribution: http://onlinestat
book.com/stat_sim/sampling_dist/
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The bootstrap
One easy and effective way to estimate the sampling distribution of a statistic, or of
model parameters, is to draw additional samples, with replacement, from the sample
itself, and recalculate the statistic or model for each resample. This procedure is called
the bootstrap, and it does not necessarily involve any assumptions about the data, or
the sample statistic, being normally-distributed.

Key Terms
Bootstrap sample

A sample taken with replacement from an observed dataset

Resampling
The process of taking repeated samples from observed data; includes both boot‐
strap and permutation (shuffling) procedures

Conceptually, you can imagine the bootstrap as replicating the original sample thou‐
sands or millions of times so that you have a hypothetical population that embodies
all the knowledge from your original sample (it’s just larger). You can then draw sam‐
ples from this hypothetical population for the purpose of estimating a sampling dis‐
tribution.

Figure 2-7. The idea of the bootstrap

In practice, it is not necessary to actually replicate the sample a huge number of
times. We simply replace each observation after each draw - we sample with replace‐
ment. In this way we effectively create an infinite population in which the probability
of an element being drawn remains unchanged from draw to draw. The algorithm for
a bootstrap resampling of the mean is as follows, for a sample of size N:
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1. Draw a sample value, record, replace it
2. Repeat N times
3. Record the mean of the N resampled values
4. Repeat steps 1-3 B times
5. Use the B results to:

a. Calculate their standard deviation (this estimates sample mean standard
error)

b. Produce a histogram or boxplot
c. Find a confidence interval

B, the number of iterations of the bootstrap, is set somewhat arbitrarily. The more
iterations you do, the more accurate the estimate of the standard error, or the confi‐
dence interval.

The bootstrap can be used with multivariate data, where the rows are sampled as
units (see Figure 2-8). A model might then be run on the bootstrapped data, for
example, to estimate the stability (variability) of model parameters, or to improve
predictive power. With classification and regression trees (also called decision trees),
running multiple trees on bootstrap samples and then averaging their predictions (or,
with classification, taking a majority vote) generally performs better than using a sin‐
gle tree. This process is called bagging (short for “bootstrap aggregating”).
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Figure 2-8. Multivariate bootstrap sampling

The repeated resampling of the bootstrap is conceptually simple, and Julian Simon,
an economist and demographer, published a compendium of resampling examples,
including the bootstrap, in his 1969 text Basic Research Methods in Social Science.
However, it is also computationally intensive, and was not a feasible option before the
widespread availability of computing power. The technique gained its name and took
off with the publication of several journal articles and a book by Stanford statistician
Bradley Efron in the late 1970’s and early 1980’s. It was particularly popular among
researchers who use statistics but are not statisticians, and for use with metrics or
models where mathematical approximations are not readily available. The sampling
distribution of the mean has been well established since 1908; the sampling distribu‐
tion of many other metrics has not. The bootstrap can be used for sample size deter‐
mination - experiment with different values for N to see how the sampling
distribution is affected.

The bootstrap met with considerable skepticism when it was first introduced; it had
the aura to many of spinning gold from straw. This skepticism stemmed from a mis‐
understanding of the bootstrap’s purpose.
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The bootstrap does not compensate for a small sample size - it does
not create new data, nor does it fill in holes in an existing dataset. It
merely informs us about lots of additional samples would be have,
when drawn from a population like our original sample.

Resampling versus bootstrapping
Sometimes the term resampling is used synonymously with the term bootstrapping,
as outlined above. More often, the term resampling also includes permutation proce‐
dures (see ???), where multiple samples are combined, and the sampling may be done
without replacement. In any case, the term bootstrap always implies sampling with
replacement from an observed dataset.

Key Ideas
1. The bootstrap (sampling with replacement from a dataset), is a powerful tool for

assessing the variability of a sample statistic.
2. The bootstrap can be applied in similar fashion in a wide variety of circumstan‐

ces, without extensive study of mathematical approximations to sampling distri‐
butions.

3. It also allows us to estimate sampling distributions for statistics where no mathe‐
matical approximation has been developed.

4. When applied to predictive models, aggregating multiple bootstrap sample pre‐
dictions (bagging) outperforms the use of a single model

Further Reading
1. An Introduction to the Bootstrap by Efron and Tibshirani (Chapman Hall, 1993);

the first book-length treatment of the bootstrap, and still widely read
2. The section on resampling in Chapter 4 (see ???) also discusses the bootstrap and

permutation procedures.
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Confidence intervals
Frequency tables, histograms, boxplots and standard errors are all ways to under‐
stand the potential error in a sample estimate. Confidence intervals are another.

Key Terms
Confidence level

The percentage of confidence intervals, constructed in the same way from the
same population, expected to contain the statistic of interest

Interval endpoints
The top and bottom of the confidence interval

There is a natural human aversion to uncertainty - people (especially experts) say “I
don’t know” far too rarely. Analysts and managers, while acknowledging uncertainty,
nonetheless place undue faith in an estimate when presented as a single number (a
point estimate). Presenting an estimate not as a single number but as a range is one
way to counteract this tendency. Confidence intervals do this in a manner grounded
in statistical sampling principles.

Confidence intervals always come with a coverage level, expressed as a (high) per‐
centage, say 90% or 95%. One way to think of a 90% confidence interval is as follows:
it is the interval that encloses the central 90% of the bootstrap sampling distribution
of a sample statistic (see “The bootstrap” on page 67). More generally, an x% confi‐
dence interval around a sample estimate should, on average, contain similar sample
estimates x% of the time (when a similar sampling procedure is followed).

Given a sample of size n, and a sample statistic of interest, the algorithm for a boot‐
strap confidence interval is as follows:

1. Draw a random sample of size n with replacement from the data (a resample)
2. Record the statistic of interest for the resample
3. Repeat steps 1-2 many times, call it B times
4. For an x% confidence interval, trim [(1-x)/2]% of the B resample results from

either end of the distribution.
5. The trim points are the endpoints of an x% bootstrap confidence interval

Figure 2-9 shows a a 90% confidence interval for the mean annual income of loan
applicants, based on a sample of 20 for which the mean was $57,573.
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Figure 2-9. Bootstrap confidence interval for the annual income of loan applicants,
based on a sample of 20

The bootstrap is a general tool that can be used to generate confidence intervals for
most statistics, or model parameters. Statistical textbooks and software, with roots in
over a half-century of computer-less statistical analysis, will also reference confidence
intervals generated by formulas, especially the t-distribution (see “Student’s t distribu‐
tion” on page 79).

Of course, what we are really interested in when we have a sample
result is “what is the probability that the true value lies within a cer‐
tain interval?” This is not really the question that a confidence
interval answers, but it ends up being how most people interpret
the answer.
The probability question associated with a confidence interval
starts out with the phrase “Given a sampling procedure and a pop‐
ulation, what is the probability that…” To go in the opposite direc‐
tion, “Given a sample result, what is the probability that
(something is true about the population),” involves more complex
calculations and deeper imponderables.

The percentage associated with the confidence interval is termed the level of confi‐
dence. The higher the level of confidence, the wider the interval. Also, the smaller the
sample, the wider the interval (i.e. the more uncertainty). Both make sense: the more
confident you want to be, and the less data you have, the wider you must make the
confidence interval to be sufficiently assured of capturing the true value.
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For a data scientist, a confidence interval is a tool to get an idea of
how variable a sample result might be. Data scientists would use
this information not to publish a scholarly paper or submit a result
to a regulatory agency (as a researcher might), but most likely to
communicate the potential error in an estimate, and, perhaps, learn
whether a larger sample is needed.

Key Ideas
1. Confidence intervals are the typical way to present estimates as an interval range.
2. The more data you have, the less variable it is, and the lower the level of confi‐

dence you can tolerate, the narrower the confidence interval.
3. The bootstrap is an effective way to construct confidence intervals

Further reading
1. For a bootstrap approach to confidence intervals see Introductory Statistics and

Analytics: A Resampling Perspective by Peter Bruce (Wiley, 2014) or Statistics by
Robin Lock and four other Lock family members (Wiley, 2012).

2. Engineers, with a need to understand the precision of their measurements, use
confidence intervals perhaps more than most disciplines, and Modern Engineer‐
ing Statistics by Tom Ryan (2007, Wiley) discusses confidence intervals. It also
reviews a tool that is just as useful and gets less attention: prediction intervals
(intervals around a single value, as opposed to a mean or other summary statis‐
tic)
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1 Iconic but perhaps overrated. George W. Cobb, the Mount Holyoke statistician noted for his contribution to
the philosophy of teaching introductory statistics, argued in a November 2015 editorial in the American Sta‐
tistician that the “standard introductory course, which puts the normal distribution at its center, had outlived
the usefulness of its centrality.”

Normal distribution
The bell-shaped normal distribution is iconic in traditional statistics.1 The fact that
distributions of sample statistics are often normally shaped provided a powerful tool
in the development of mathematical formulas that approximate those distributions.

Key Terms
Error

The difference between a data point and a predicted or average value

Standardize
Subtract the mean and divide by the standard deviation

Z score
The result of standardizing an individual data point

Standard normal
A normal distribution with mean = 0 and standard deviation = 1

QQ-Plot
A plot to visualize how close a sample distribution is to a normal distribution.

In a normal distribution (Figure 2-10) 68% of the data lie within one standard devia‐
tion of the mean, and 95% lie within two standard deviations.
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Figure 2-10. Normal curve

It is a common misconception that the normal distribution is
called that because most data follow a normal distribution, i.e. it is
the normal thing. Most of the variables used in a typical data sci‐
ence project, in fact most raw data as a whole, are not normally dis‐
tributed: see “Long-Tailed Distributions” on page 77. The utility of
the normal distribution derives from the fact that many statistics
are normally distributed in their sampling distribution. Even so,
assumptions of normality are generally a last resort, used when
empirical probability distributions, or bootstrap distributions, are
not available.
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The normal distribution is also referred to as a Gaussian distribu‐
tion after Carl Friedrich Gauss, a prodigous German mathemati‐
cian from the late 18th and early 19th century. Another name
previously used for the normal distribution was the “error” distri‐
bution. Statistically speaking, an error is the difference between an
actual value and a statistical estimate like the sample mean. For
example, the standard deviation (see “Estimates of Variability” on
page 24) is based on the errors from the mean of the data. Develop‐
ment of the normal distribution by Gauss came from study of the
errors of astronomical measurements that were found to be
normally-distributed.

Standard Normal and QQ-Plots
A standard normal distribution is one in which the units on the x-axis are expressed
in terms of standard deviations away from the mean. To compare data to a standard
normal distribution you subtract the mean then divide by the standard deviation; this
is also called normalization or standardization. Note that “standardization” in this
sense is unrelated to database record standardization (conversion to a common for‐
mat). The transformed value is termed a z-score, and the normal distribution is
sometimes called the z-distribution.

Figure 2-11. QQ-Plot of a sample of 100 values drawn from a normal distribution.
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A QQ-Plot is used to visually determine how close a sample is to the normal distribu‐
tion. The QQ-Plot orders the z-scores from low to high, and plots each value’s z-score
on the y-axis; the x-axis is the corresponding quantile of a normal distribution for
that value’s rank. Since the data are normalized, the units correspond to the number
of standard deviations away of the data from the mean. If the points roughly fall on
the diagonal line, then the sample distribution can be considered close to normal.
Figure 2-11 shows a QQ-Plot for a sample of 100 values randomly generated from a
normal distribution: as expected, the points closely follow the line. This figure can
easily be produced in R:

norm_samp <- rnorm(100)
qqnorm(norm_samp)
abline(a=0, b=1, col='grey')

Converting data to z-scores (i.e. standardizing or normalizing the
data) does not make the data normally distributed. It just puts the
data on the same scale as the standard normal distribution, often
for comparison purposes.

Key Ideas
1. The normal distribution was essential to the historical development of statistics

as it permitted mathematical approximation of uncertainty and variability.
2. While raw data are typically not normally-distributed, errors often are.
3. Data are often converted to z-scores by subtracting the mean of the data, and

dividing by the standard deviation; the data can then be compared to a normal
distribution.

Long-Tailed Distributions
Despite the importance of the normal distribution historically in statistics, and in
contrast to what the name would suggest, data are generally not normally distributed.

Key Terms for Long-Tail Distribution
Tail

The long narrow portion of a frequency distribution, where relatively extreme
values occur at low frequency
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Skew
Where one tail of a distribution is longer than the other

While the normal distribution is often appropriate and useful with respect to the dis‐
tribution of errors and sample statistics, it typically does not characterize the distribu‐
tion of raw data. Sometimes, the distribution is highly skewed (asymmetric), such as
with income data, or the distribution can be discrete, as with binomial data. Both
symmetric and asymmetric distributions may have long tail(s). The tails of a distribu‐
tion correspond to the extreme values (small and large). Long-tails, and guarding
against them, are widely recognized in practical work. Nassim Taleb has proposed the
black swan theory which predicts that anamolous events, such as a stock market
crash, are likely to occur in much greater likelihood than would be predicted by the
normal distribution.

Figure 2-12. QQ-Plot of the returns for NFLX.

To illustrate the long-tailed nature of data, a good example is to look at stock returns.
Figure 2-12 shows the QQ-Plot for the daily stock returns for Netflix (NFLX), gener‐
ated in R by

sp500_px <- read.csv("/Users/andrewbruce1/book/sp500_data.csv", row.names = 1)
nflx <- sp500_px[,'NFLX']
nflx <- diff(log(nflx[nflx>0]))
qqnorm(nflx)
abline(a=0, b=1, col='grey')
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In contrast to Figure 2-11, the points are far below the line for low values and far
above the line for high values. This means that we are much more likely to observe
extreme values than would be expected if the data had a normal distribution.
Figure 2-12 shows another common phenomena: the points are close to the line for
the data within one standard deviation of the mean. Tukey calls this phenomena as
data being “normal in the middle”, but having much longer tails (see ???).

There is much statistical literature about the task of fitting statisti‐
cal distributions to observed data. Beware an excessively data-
centric approach to this job, which is as much art as science. Data
are variable, and often consistent, on their face, with more than one
shape and type of distribution. It is typically the case that domain
and statistical knowledge must be brought to bear to determine
what type of distribution is appropriate to model a given situation.
For example, we might have data on the level of internet traffic on a
server over many consecutive 5-second periods. It is useful to know
that the best distribution to model “events per time period” is the
Poisson (see “Poisson Distributions” on page 85).

Key Ideas for Long-Tail Distribution
1. Most data are not normally distributed
2. Assuming a normal distribution can lead to underestimation of extreme events

(“black swans”)

Further Reading
1. The Black Swan by Nassim Taleb (2010, 2nd ed., Random House)
2. Handbook of Statistical Distributions with Applications, by K. Krishnamoorthy

(2016, 2nd ed., CRC Press)

Student’s t distribution
The t-distribution is a normally-shaped distribution, but a bit thicker and longer on
the tails. It is used extensively in depicting distributions of sample statistics. Distribu‐
tions of sample means are typically shaped like a t-distribution, and there is a family
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of t-distributions that differ depending on how large the sample is. The larger the
sample, the more normally-shaped the t-distribution becomes.

Key Terms for Student’s t-distribution
n

Sample size

degrees of freedom
A parameter that allows the t-distribution to adjust to different sample sizes, sta‐
tistics, and number of groups. *_

The t-distribution is often called Student’s t because it was published in 1908 in Bio‐
metrika by W. S. Gossett under the name “Student.” Gossett’s employer, the Guiness
brewery, did not want competitors to know that they were using statistical methods,
so insisted that Gossett not use his name on the article.

Gossett wanted to answer the question “what is the sampling distribution of the mean
of a sample, drawn from a larger population.” He started out with a resampling
experiment - drawing random samples of four from a dataset of 3000 measurements
of criminals’ height and left middle finger lengths. (This being the era of eugenics,
there was much interest in data on criminals, and in discovering correlations between
criminal tendencies and physical or psychological attributes.) He plotted the standar‐
dized results (the z-scores) on the x-axis, and the frequency on the y-axis. Separately,
he had derived a function - now known as Student’s t, and he fit this function over the
sample results, plotting the comparison (see Figure 2-13).

Figure 2-13. Gossett’s resampling experiment results and fitted t-curve (from his 1908
Biometrika paper
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A number of different statistics can be compared, after standardization, to the t-
distribution, to estimate confidence intervals in light of sampling variation. Consider
a sample of size n for which the sample mean, x-bar, has been calculated. We can esti‐
mate a 90% confidence interval around the sample mean by adding and subtracting
the following:

t(n-1).05*(s/sqrt n)

where t(n-1).05 is the value of the t-statistic, with (n-1) degrees of freedom (see ???),
that “chops off ” 5% of the t-distribution at either end.

The t-distribution has been used as a reference for the distribution of a sample mean,
of the difference between two sample means, of regression parameters, and more.

Had computing power been widely available in 1908, statistics would no doubt have
relied much more heavily on computationally intensive resampling methods from the
start. Lacking computers, statisticians turned to mathematics, and functions such as
the t-distribution, to approximate sampling distributions. Computer power enabled
practical resampling experiments in the 1980’s but, by then, use of the t-distribution
and similar distributions had become deeply embedded in textbooks and software.

The t-distribution’s accuracy in depicting the behavior of a sample statistic requires
that the distribution of that statistic for that sample be shaped like a normal distribu‐
tion. It turns out that sample statistics are often normally distributed, even when the
underlying population data are not (a fact which led to widespread application of the
t-distribution). This phenomenon is termed the Central Limit Theorem (see ???).

What do data scientists need to know about the t-distribution, and
the central limit theorem? Not a whole lot. These distributions are
used in classical statistical inference, but are not as central to the
purposes of data science. Understanding and quantifying uncer‐
tainty and variation are important to data scientists, but empirical
bootstrap sampling can answer most questions about sampling
error. However, data scientists will routinely encounter t-statistics
in output from statistical software and statistical procedures in R,
e.g. in A-B tests and regressions, so familiarity with its purpose is
helpful.

Key Ideas for t-distribution
1. The t-distribution is actually a family of distributions resembling the normal dis‐

tribution, but with thicker tails
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2. It is widely used as a reference basis for the distribution of sample means, differ‐
erences between two sample means, regression parameters, and more.

Further Reading
1. The original Gossett paper in Biometrica from 1908 can be found here: http://

seismo.berkeley.edu/~kirchner/eps_120/Odds_n_ends/Students_original_paper.pdf
2. A standard treatment of the t-distribution can be found in David Lane’s online

resource: http://onlinestatbook.com/2/estimation/t_distribution.html

Binomial distribution

Key Terms for Binomial Distribution
Trial

An event with a discrete outcomes, e.g. a coin flip

Success
The outcome of interest for a trial

Synonyms
“1” (as opposed to “0”)

Binomial
Having two outcomes

Synonyms
yes/no, 0/1, binary

Binomial trial
A trial with two outcomes

Synonym
Bernoulli trial

Binomial distribution
Distribution of number of successes in x trials Synonym::: Bernoulli distribution

Yes/no (binomial) outcomes lie at the heart of analytics since they are often the cul‐
mination of a decision or other process - buy/don’t buy, click/don’t click, survive/die,
etc. Central to understanding the binomial distribution is the idea of a set of trials,
each trial having two possible outcomes with definite probabilities.
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Image courtesy of CCF Numismaticsfootnote[Public domain or CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0), via Wikimedia Commons]

For example, flipping a coin ten times is a binomial experiment with ten trials, each
trial having two possible outcomes (heads or tails). Such yes/no or 0/1 outcomes are
termed binary outcomes, and they need not have 50/50 probabilities. Any probabili‐
ties that sum to 1.0 are possible. It is conventional in statistics to term the “1” out‐
come the success outcome; it is also common practice to assign “1” to the more rare
outcome. Use of the term “success” does not imply that the outcome is desirable or
beneficial; it does tend to indicate the outcome of interest. For example, a loan default
or a fraudulent transaction are relatively uncommon events that we may be interested
in predicting, so are termed “1’s” or “successes.”

The binomial distribution is the frequency distribution of the number of successes (x)
in a given number of trials (n) with specified probability (p) of success oin each trial.
There is a family of binomial distributions, depending on the values of x, n and p.
The binomial distribution would answer a question like this:

“If the probability of a click converting to a sale is 0.02, what is the probability of
observing 0 sales in 200 clicks?”

The R code to calculate binomial probabilities is

> dbinom(x, n, p)

For example,

> dbinom(2, 5, 0.1)

would return 0.0729, the probability of observing exactly 2 successes in 5 trials, where
the probability of success for each trial is 0.1.

Often we are interested in determining the probability of x or fewer successes in n
trials, the code for that is

> pbinom(x, n, p)

For example

> pbinom(2, 5, 0.1)
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would return 0.9914, the probability of observing 2 or fewer successes in 5 trials,
where the probability of success for each trial is 0.1.

The mean of a binomial distribution is np; you can also think of this as the expected
number of successes in n trials, for success probability = p.

The variance is as follows:

np(1-p)

With a large enough number of trials (particularly when p is close to 0.50), the bino‐
mial distribution is virtually indistinguishable from the normal distribution. In fact,
calculating binomial probabilities with large sample sizes is computationally demand‐
ing, and most statistical procedures use the normal distribution, with mean and var‐
iance as above, as an approximation.

Key Ideas
1. Binomial outcomes are important to model, since they represent, among other

things, fundamental decisions (buy or don’t buy, click or don’t click, survive or
die, etc.)

2. Binomial trial is an experiment with two possible outcomes, one with probability
p and the other with probabiltiy 1-p

3. With large n, and provided p is not too close to 0 or 1, the binomial distribution
can be approximated by the normal distribution

Further Reading
1. An easy read can be found at https://www.mathsisfun.com/data/binomial-

distribution.html . Check out the section on the “quincunx,” a pinball-like simula‐
tion device for illustrating the binomial distribution.

2. The binomial distribution is a staple of introductory statistics, and all introduc‐
tory statistics texts will have a chapter or two on it.
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Poisson and Related Distributions
Many processes produce events randomly at a given overall rate - visitors arriving at a
web site, cars arriving at a toll plaza (events spread over time), imperfections in a
square meter of fabric, or typos per 100 lines of code (events spread over space).

Key Terms for Poisson and Related Distributions
Lambda

The rate (per unit of time or space) at which events occur

Poisson distribution
The frequency distribution of the number of events in sampled units of time or
space

Synonyms
“1” (as opposed to “0”)

Exponential distribution
The frequency distribution of the time or distance from one event to the next
event

Synonyms
yes/no, 0/1, binary

Weibull distribution
A generalized version of the exponential, in which the event rate is allowed to
shift over time

Poisson Distributions
From prior data we can estimate the average number of events per unit of time or
space, but we might also want to know how different this might be from one unit of
time/space to another. The Poisson distribution tells us the distribution of events per
unit of time or space, when we sample many such units. It is useful when addressing
queuing questions like “how much capacity do we need to be 95% sure of fully pro‐
cessing the internet traffic that arrives on a server in any 5 second period.”

The key parameter in a Poisson distribution is λ, or lambda. This is the mean number
of events that occurs in a specified interval of time or space. The variance for a Pois‐
son distribution is also λ.

A common technique is to generate random numbers from a Poisson distribution as
part of a queuing simulation. The rpois function in R does this, taking only two argu‐
ments - the quantity of random numbers sought, and lambda:
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>rpois(100, lambda = 2)

This code will generate 100 random numbers from a Poisson distribution with λ = 2.
For example, if incoming customer service calls average two per minute, this code
will simulate 100 minutes, returning the number of calls in each of those 100 minutes.

Exponential distribution
Using the same parameter λ that we used in the Poisson distribution, we can also
model the distribution of the time between events: time between visits to a web site or
between cars arriving at a toll plaza. It is also used in engineering to model time to
failure, and in process management to model, for example, the time required per ser‐
vice call. The R code to generate random numbers from an exponential distribution
takes two arguments, n (the quantity of numbers to be generated), and rate, the num‐
ber of events per time period. For example:

rexp(n = 100, rate = .2)

This code would generate 100 random numbers from an exponential distribution
where the mean number of events per time period is 2. So you could use it to simulate
100 intervals, in minutes, between service calls, where the average rate of incoming
calls is 0.2 per minute.

A key assumption in any simulation study for either the Poisson or exponential distri‐
bution is that the rate, λ, remains constant over the period being considered. This is
rarely reasonable in a global sense; for example, traffic on roads or data networks
varies by time of day, and day of week. However, the time periods, or areas of space,
can usually be divided into segments that are sufficiently homogeneous so that analy‐
sis or simulation within those periods is valid.

Inference
In many applications, the event rate, λ, is known or can be estimated from prior data.
However, for rare events, this is not necessarily so. Aircraft engine failure, for exam‐
ple, is sufficiently rare (thankfully) that, for a given engine type, there may be little
data on which to base an estimate of time between failures. With no data at all, there
is little basis on which to estimate an event rate. However, you can make some guess -
if no events have been seen after 20 hours, you can be pretty sure that the rate is not 1
per hour. Via simulation, or direct calculation of probabilities, you can assess differ‐
ent hypothetical event rates and estimate threshold values below which the rate is
very unlikely to fall. If there is some data but not enough to provide a precise, reliable
estimate of the rate, a goodness-of-fit test (see ???) can be applied to various rates to
determine how well they fit the observed data.
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Weibull distribution
In many cases, the event rate does not remain constant over time. If the period over
which it changes is much longer than the typical interval between events, there is no
problem - you just subdivide the analysis into the segments where rates are relatively
constant, as mentioned above. If, however, the event rate changes over the time of the
interval, the exponential (or Poisson) distributions are no longer useful. This is likely
to be the case in mechanical failure - the risk of failure increases as time goes by. The
Weibull distribution is an extension of the exponential distribution, in which the
event rate is allowed to change, as specified by a shape paramenter, β. If β is > 1, the
probability of an event increases over time, if β is < 1, it decreases. Because the Wei‐
bull distribution is used with time-to-failure analysis, instead of event rate, the second
parameter is expressed in terms of characteristic life, rather than in terms of the rate
of events per interval. The symbol used is η, the Greek letter eta. It is also called the
scale parameter.

With the Weibull, the estimation task now includes estimation of both parameters, β
and η. Software is used to model the data and yield an estimate of the best fitting Wei‐
bull distribution.

The R code to generate random numbers from a Weibull distribution takes three
arguments, n (the quantity of numbers to be generated), shape and scale. For example,
the following code would generate 100 random numbers (lifetimes) from a Weibull
distribution with shape = 1.5 and characteristic life of 5000:

rweibull(100,1.5,5000)

Key Ideas
1. For events that occur at a constant rate, the number of events per unit of time or

space can be modeled as a Poisson distribution
2. In this scenario, you can also model the time or distance between one event and

the next as an exponential distribution
3. A changing event rate over time (e.g. an increasing probability of device failure)

can be modeled with the Weibull distribution

Further reading
1. Modern Engineering Statistics by Tom Ryan (2007, Wiley) has a chapter devoted

to the probability distributions used in engineering applications

Poisson and Related Distributions | 87



2. Further reading on the use of the Weibull distribution (mainly from an engineer‐
ing perspective): http://www.sascommunity.org/sugi/SUGI88/Sugi-13-43%20Kay
%20Price.pdf http://www.ipedr.com/vol75/29_ICQM2014-051.pdf

Summary
In the era of big data, the principles of random sampling remain important in cases
where accurate estimates are needed. Random selection of data can reduce bias, and
yield a higher quality dataset than would result from simply using all the
conveniently-available data. Knowledge of various sampling and data generating dis‐
tributions can allow us to quantify the potential error in an estimate that might be
due to random variation. At the same time, the bootstrap (sampling with replacement
from an observed dataset) is an attractive “one size fits all” method of determining
potential error in sample estimates.
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